########## Pruning v2 ########## The ``enot.pruning_v2`` module is the successor of :ref:`enot.pruning ` module. It solves the same problem, but has a more powerful engine and will support more operations and types of pruning in the future. All the basic concepts used in this module are described :ref:`here `. Module exports the following names: * :class:`~enot.pruning_v2.PruningIR` * :class:`~enot.pruning_v2.LossAwareCriterion` *(label selectors)* * :class:`~enot.pruning_v2.UniformLabelSelector` * :class:`~enot.pruning_v2.GlobalScoreLabelSelector` * :class:`~enot.pruning_v2.BinarySearchLatencyLabelSelector` * :class:`~enot.pruning_v2.KnapsackLabelSelector` * :class:`~enot.pruning_v2.SCBOLabelSelector` The pruning workflow can be described as follows: #. Create :class:`~enot.pruning_v2.PruningIR` using a model. #. Create :class:`~enot.pruning_v2.LossAwareCriterion` context manager using PruningIR and collect scores inside this context (calibration). #. Create label selector, for example :class:`~enot.pruning_v2.UniformLabelSelector` and select the labels to be pruned using the :func:`~enot.pruning_v2.UniformLabelSelector.select` method. #. Prune model using :func:`~enot.pruning_v2.PruningIR.prune` method of PruningIR and selected labels. The pruning code of user-defined model looks like this: .. code-block:: python from enot.pruning_v2 import PruningIR from enot.pruning_v2 import LossAwareCriterion from enot.pruning_v2 import UniformLabelSelector # 1. create PruningIR ir = PruningIR(model) # 2. create criterion and collect scores (calibration) with LossAwareCriterion(ir) as score_collector: for sample in train_loader: model_output = score_collector(sample) loss = loss_function(model_output, sample) loss.backward() # 3. create label selector and select the labels to be pruned label_selector = UniformLabelSelector(pruning_ratio=0.5) labels_for_pruning = label_selector.select(ir.snapshot()) # 4. prune model using selected labels ir = ir.prune(labels=labels_for_pruning) pruned_model = ir.model .. autoclass:: enot.pruning_v2.PruningIR :members: __init__, prune .. autoclass:: enot.pruning_v2.LossAwareCriterion :members: __init__ .. autoclass:: enot.pruning_v2.UniformLabelSelector :members: .. autoclass:: enot.pruning_v2.GlobalScoreLabelSelector :members: .. autoclass:: enot.pruning_v2.BinarySearchLatencyLabelSelector :members: .. autoclass:: enot.pruning_v2.KnapsackLabelSelector :members: .. autoclass:: enot.pruning_v2.SCBOLabelSelector :members: .. autoclass:: enot.pruning_v2.label_selector.LatencyMeasurementError :members: